1,041 research outputs found

    Analog Signal Buffering and Reconstruction

    Get PDF
    Wireless sensor networks (WSNs) are capable of a myriad of tasks, from monitoring critical infrastructure such as bridges to monitoring a person\u27s vital signs in biomedical applications. However, their deployment is impractical for many applications due to their limited power budget. Sleep states are one method used to conserve power in resource-constrained systems, but they necessitate a wake-up circuit for detecting unpredictable events. In conventional wake-up-based systems, all information preceding a wake-up event will be forfeited. To avoid this data loss, it is necessary to include a buffer that can record prelude information without sacrificing the power savings garnered by the active use of sleep states.;Unfortunately, traditional memory buffer systems utilize digital electronics which are costly in terms of power. Instead of operating in the target signal\u27s native analog environment, a digital buffer must first expend a great deal of energy to convert the signal into a digital signal. This issue is further compounded by the use of traditional Nyquist sampling which does not adapt to the characteristics of a dynamically changing signal. These characteristics reveal why a digital buffer is not an appropriate choice for a WSN or other resource-constrained system.;This thesis documents the development of an analog pre-processing block that buffers an incoming signal using a new method of sampling. This method requires sampling only local maxima and minima (both amplitude and time), effectively approximating the instantaneous Nyquist rate throughout a time-varying signal. The use of this sampling method along with ultra-low-power analog electronics enables the entire system to operate in the muW power levels. In addition to these power saving techniques, a reconfigurable architecture will be explored as infrastructure for this system. This reconfigurable architecture will also be leveraged to explore wake-up circuits that can be used in parallel with the buffer system

    Data Conversion Within Energy Constrained Environments

    Get PDF
    Within scientific research, engineering, and consumer electronics, there is a multitude of new discrete sensor-interfaced devices. Maintaining high accuracy in signal quantization while staying within the strict power-budget of these devices is a very challenging problem. Traditional paths to solving this problem include researching more energy-efficient digital topologies as well as digital scaling.;This work offers an alternative path to lower-energy expenditure in the quantization stage --- content-dependent sampling of a signal. Instead of sampling at a constant rate, this work explores techniques which allow sampling based upon features of the signal itself through the use of application-dependent analog processing. This work presents an asynchronous sampling paradigm, based off the use of floating-gate-enabled analog circuitry. The basis of this work is developed through the mathematical models necessary for asynchronous sampling, as well the SPICE-compatible models necessary for simulating floating-gate enabled analog circuitry. These base techniques and circuitry are then extended to systems and applications utilizing novel analog-to-digital converter topologies capable of leveraging the non-constant sampling rates for significant sample and power savings

    Some Aspects of Measurement Error in Linear Regression of Astronomical Data

    Full text link
    I describe a Bayesian method to account for measurement errors in linear regression of astronomical data. The method allows for heteroscedastic and possibly correlated measurement errors, and intrinsic scatter in the regression relationship. The method is based on deriving a likelihood function for the measured data, and I focus on the case when the intrinsic distribution of the independent variables can be approximated using a mixture of Gaussians. I generalize the method to incorporate multiple independent variables, non-detections, and selection effects (e.g., Malmquist bias). A Gibbs sampler is described for simulating random draws from the probability distribution of the parameters, given the observed data. I use simulation to compare the method with other common estimators. The simulations illustrate that the Gaussian mixture model outperforms other common estimators and can effectively give constraints on the regression parameters, even when the measurement errors dominate the observed scatter, source detection fraction is low, or the intrinsic distribution of the independent variables is not a mixture of Gaussians. I conclude by using this method to fit the X-ray spectral slope as a function of Eddington ratio using a sample of 39 z < 0.8 radio-quiet quasars. I confirm the correlation seen by other authors between the radio-quiet quasar X-ray spectral slope and the Eddington ratio, where the X-ray spectral slope softens as the Eddington ratio increases.Comment: 39 pages, 11 figures, 1 table, accepted by ApJ. IDL routines (linmix_err.pro) for performing the Markov Chain Monte Carlo are available at the IDL astronomy user's library, http://idlastro.gsfc.nasa.gov/homepage.htm

    The Cross-Wavelet Transform and Analysis of Quasiperiodic Behavior in the Pearson-Readhead VLBI Survey Sources

    Get PDF
    We introduce an algorithm for applying a cross-wavelet transform to analysis of quasiperiodic variations in a time-series, and introduce significance tests for the technique. We apply a continuous wavelet transform and the cross-wavelet algorithm to the Pearson-Readhead VLBI survey sources using data obtained from the University of Michigan 26-m parabloid at observing frequencies of 14.5, 8.0, and 4.8 GHz. Thirty of the sixty-two sources were chosen to have sufficient data for analysis, having at least 100 data points for a given time-series. Of these thirty sources, a little more than half exhibited evidence for quasiperiodic behavior in at least one observing frequency, with a mean characteristic period of 2.4 yr and standard deviation of 1.3 yr. We find that out of the thirty sources, there were about four time scales for every ten time series, and about half of those sources showing quasiperiodic behavior repeated the behavior in at least one other observing frequency.Comment: Revised version, accepted by ApJ. 17 pages, 13 figures, color figures included as gifs, seperate from the text. The addition of statistical significance tests has resulted in modifying the technique and results, but the broad conclusion remain the same. A high resolution version may be found at http://www.astro.lsa.umich.edu/obs/radiotel/prcwdata.htm

    Dust SEDs in the era of Herschel and Planck: a Hierarchical Bayesian fitting technique

    Full text link
    We present a hierarchical Bayesian method for fitting infrared spectral energy distributions (SEDs) of dust emission to observed fluxes. Under the standard assumption of optically thin single temperature (T) sources the dust SED as represented by a power--law modified black body is subject to a strong degeneracy between T and the spectral index beta. The traditional non-hierarchical approaches, typically based on chi-square minimization, are severely limited by this degeneracy, as it produces an artificial anti-correlation between T and beta even with modest levels of observational noise. The hierarchical Bayesian method rigorously and self-consistently treats measurement uncertainties, including calibration and noise, resulting in more precise SED fits. As a result, the Bayesian fits do not produce any spurious anti-correlations between the SED parameters due to measurement uncertainty. We demonstrate that the Bayesian method is substantially more accurate than the chi-square fit in recovering the SED parameters, as well as the correlations between them. As an illustration, we apply our method to Herschel and sub millimeter ground-based observations of the star-forming Bok globule CB244. This source is a small, nearby molecular cloud containing a single low-mass protostar and a starless core. We find that T and beta are weakly positively correlated -- in contradiction with the chi-square fits, which indicate a T-beta anti-correlation from the same data-set. Additionally, in comparison to the chi-square fits the Bayesian SED parameter estimates exhibit a reduced range in values.Comment: 20 pages, 9 figures, ApJ format, revised version matches ApJ-accepted versio

    Morphological Classification of Galaxies by Shapelet Decomposition in the Sloan Digital Sky Survey II: Multiwavelength Classification

    Full text link
    We describe the application of the `shapelet' linear decomposition of galaxy images to multi-wavelength morphological classification using the u,g,r,i,u,g,r,i, and zz-band images of 1519 galaxies from the Sloan Digital Sky Survey. We utilize elliptical shapelets to remove to first-order the effect of inclination on morphology. After decomposing the galaxies we perform a principal component analysis on the shapelet coefficients to reduce the dimensionality of the spectral morphological parameter space. We give a description of each of the first ten principal component's contribution to a galaxy's spectral morphology. We find that galaxies of different broad Hubble type separate cleanly in the principal component space. We apply a mixture of Gaussians model to the 2-dimensional space spanned by the first two principal components and use the results as a basis for classification. Using the mixture model, we separate galaxies into three classes and give a description of each class's physical and morphological properties. We find that the two dominant mixture model classes correspond to early and late type galaxies, respectively. The third class has, on average, a blue, extended core surrounded by a faint red halo, and typically exhibits some asymmetry. We compare our method to a simple cut on uru-r color and find the shapelet method to be superior in separating galaxies. Furthermore, we find evidence that the ur=2.22u-r=2.22 decision boundary may not be optimal for separation between early and late type galaxies, and suggest that the optimal cut may be ur2.4u-r \sim 2.4.Comment: 42 pages, 18 figs, revised version in press at AJ. Some modification to the technique, more discussion, addition/deletion/modification of several figures, color figures have been added. A high resolution version may be obtained at http://bllac.as.arizona.edu/~bkelly/shapelets/shapelets_ugriz.ps.g

    Review of UK microgeneration. Part 1 : policy and behavioural aspects

    Get PDF
    A critical review of the literature relating to government policy and behavioural aspects relevant to the uptake and application of microgeneration in the UK is presented. Given the current policy context aspiring to zero-carbon new homes by 2016 and a variety of minimum standards and financial policy instruments supporting microgeneration in existing dwellings, it appears that this class of technologies could make a significant contribution to UK energy supply and low-carbon buildings in the future. Indeed, achievement of a reduction in greenhouse gas emissions by 80% (the UK government's 2050 target) for the residential sector may entail substantial deployment of microgeneration. Realisation of the large potential market for microgeneration relies on a variety of inter-related factors such as microeconomics, behavioural aspects, the structure of supporting policy instruments and well-informed technology development. This article explores these issues in terms of current and proposed policy instruments in the UK. Behavioural aspects associated with both initial uptake of the technology and after purchase are also considered
    corecore